

MACH₂

Mega Ammonia Cracking H₂ technology

We are a global partner in the chemical industry, offering integrated technologies, engineering, contracting and construction solutions for over a century.

Our mission

Contribute to shape a new sustainable planet with our plants for the production of fertilizer, methanol, hydrogen, melamine and derivatives, and help our customers creating value respecting the environment.

We are a global company front leader in the energy transition: a key player in the sustainable transformation of the chemical and energy industry, from a social, economic and environmental point of view.

Our values

INNOVATION PEOPLE CARE PROFESSIONAL EXCELLENCE QUALITY SAFETY ETHIC SUSTAINABILITY

MACH,

MACH₂ is Casale's proprietary ammonia cracking process to convert ammonia into hydrogen for sustainable applications. The technology leverages Casale leading position in ammonia technology making it the most reliable and efficient solution available on the market. It is devised to fit a broad spectrum of hydrogen plant capacities, offering the highest single train plant capacity - exceeding 1300 MTD - while delivering exceptionally pure hydrogen.

MACH₂ process scheme can be customized and optimized according to the client's needs (optimizing CAPEX or OPEX), acting on different operating parameters and plant optimization: steam export, power generation or co-generation, which can be easily integrated in the Casale MACH₂ ammonia cracking technology.

MACH₃ technology has been developed in strict cooperation with leading Catalyst Manufactures.

Capacity

From **5 MTD** to **1300+ MTD** of H₂ with single train configurations

Carbon Intensity, kg of CO₂ per kg of H₂:
• from 0 to 0.6³.

Performances

9	H ₂ purity up to grade 5 (99.999%)
ϕ	H ₂ efficiency ¹ from NH ₃ : up to 96% ²
\bigcirc	H, product pressure: over 40 bar without H, compressor

Benefits

9	Market leader in H ₂ single train capacity
\Diamond	Highly reliable
\Diamond	Very high plant efficiency
\Diamond	Tailored and customized solution
\Diamond	Compact design
	Catalyst agnostic design to ensure performance, flexibility & lowest cost

- (1): Defined as the % of NH $_3$ effectively converted into H $_2$ at the battery limits, the balance converted ammonia (Tail gas) is used as fuel.
- (2): Depending on the selected process scheme.
- (3): Low carbon case scheme.

Casale technical assets

9	Ammonia Cracker Unit
ϕ	Expertise in metallurgical selection in NH ₃ environment process optimization
	Strong ammonia cracking plant modularization expertise

PROCESS OUTLINE

The liquid ammonia from storage is first vaporized and preheated up to the temperature required for the reaction.

The preheated ammonia is then sent to the core unit, the ammonia cracking unit, where the ammonia decomposition takes place. The resulting gas is finally sent to the hydrogen purification section consisting in well-know and proven technologies commonly used in different industrial processes:

- \bullet ammonia Recovery Unit: based on H_2O/NH_3 absorption & distillation technologies where the unconverted ammonia is recovered and recycled
- \bullet hydrogen Pressure Swing Absorption (PSA) unit where the H_2 is recovered and purified up to the required level.

The Ammonia Cracking Unit configuration is selected according to the plant capacity and performances.

MACH₂ technology simplified scheme

Casale in the world

Headquarter

CASALE SA
Via Giulio Pocobelli, 6
6900 Lugano | Switzerland

Branch offices

Switzerland | Lugano Czech Republic | Prague China | Beijing, Shanghai North America | Houston

Network of Representatives

Egypt, India, Uzbekistan, Indonesia, Thailand, Malaysia, Russia, United Arab Emirates, Vietnam

